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a  b  s  t  r  a  c  t

Mathematical  models  for  the  release  of  drug  from  both  non-degradable  and  degradable  slab  matrices
in  which  the  initial  drug  loading  is  greater  than  the solubility  are  presented  in  this  paper.  Taking  the
anomalous  diffusions  in  the  drug  release  processes  into  account,  the  fractional  calculus  is  introduced  to
model  the  related  phenomena.  To  describe  different  kinds  of  anomalous  diffusions,  corresponding  frac-
tional  diffusion  equations  are  adopted.  By  employing  the  integral  transform  methods,  similarity  solution
eywords:
rug release mechanism
athematical models

nomalous diffusion
ractional calculus

method  and  perturbation  method,  exact  and  approximation  solutions  to  the models  are  obtained.
© 2010 Elsevier B.V. All rights reserved.
oving boundary problem
xact and approximation solutions

. Introduction

Controlled release formulations can be used to reduce the
mount of drug necessary to cause the same therapeutic effect in
atients. Mathematical models predicting the dynamics of solute
oncentration and mass flux are of interest for biomedical engi-
eers and clinicians, because good models can provide insights
oncerning mass transport and chemical processes and offer a sug-
estion for optimizing the design and technology of drug delivery
ystem. Since Higuchi published his remarkable work in the early
960s (Higuchi, 1961, 1963), many mathematical models have
een developed to interpret the kinetics of drug release process.
ome exact and approximate solutions were obtained to predict
he amount of drug release for designing matrix system.

In controlled drug delivery system, diffusion is the basic mech-
nism. Most of the models describing drug release from a slab
atrix are based on Fick’s first and second laws. However, the

iffusion processes in complex systems named ‘anomalous diffu-

ion’ usually no longer follow Gaussian statistics, and Fick’s second
aw fails to describe the related transport behavior (Metzler and
lafter, 2000b).  Many mathematical models are used to describe

he anomalous diffusions, such as continuous time random walk

∗ Corresponding author. Tel.: +86 10 6275 4244; fax: +86 10 6275 1812.
E-mail addresses: pkuyinchen@gmail.com (C. Yin), xichengli@hhu.edu.cn (X. Li).

378-5173/$ – see front matter ©  2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijpharm.2010.12.009
(CTRW) models, generalized diffusion equations, Langevin equa-
tions and so on. Using the CTRW models, the Brownian motion
can be generalized to sub-diffusion or dispersive transport, to Lévy
flights or to Lévy walks. All of these models can be mapped onto
the corresponding fractional equations (Metzler and Klafter, 2004).
Although the fractional calculus has been conceptualized since
1695 (Miller and Ross, 1993), its connections with these statistical
models have not been formally established until the last 20 years
(Mandelbrot, 1983; Podlubny, 1999; Kilbas et al., 2006).

In this paper, some mathematical aspects on diffusion models
of drug release process based on integer and fractional deriva-
tives are shown. The review is organized as follows: In Section 2,
we show some mathematical models of drug release using inte-
ger order operators. The models considering anomalous diffusion
in both non-degradable and degradable matrices using fractional
derivatives are presented in Section 3. Some results of fractional
models are given in Section 4. In Section 5, the conclusions are
given.

2. Models based on classical Fick’s law
2.1. Pseudo-steady-state assumption

Higuchi (1961) firstly developed a remarkable simple model to
simulate the drug release process from ointment in a planar system

dx.doi.org/10.1016/j.ijpharm.2010.12.009
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:pkuyinchen@gmail.com
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Fig. 1. Profile of concentration in Higuchi’s model.

Fig. 1). The well-known Higuchi’s result is given as

 =
√

(2C0 − Cs)CsDt, (1)

here Q is the amount of drug absorbed at time t per unit area. C0
s the initial loading of drug. Cs is the solubility of drug and D is the
iffusion coefficient of drug.

The model is based on the assumption named ‘pseudo-steady-
tate’, which supposes a linear concentration profile in the diffusion
egion of a planar system. Another important assumption is that
he initial drug loading C0 should be greater than Cs, which implies
hat the drug release system is diffusion-controlled. Perfect sink
ondition implies the drug is absorbed or removed immediately
fter it diffuses out from the ointment.

Higuchi (1963) studied the drug release process from granular
atrix in a planar system. The extensive formula is given as

 =
√

Dε

�
(2C0 − Cs)Cst, (2)

here ε is the porosity of matrix system and � is the tortuosity
actor which is introduced to correct the effect of granular matrix.
e also studied the drug release mechanism in a spherical system.
ut the relation between amount of drug release and parameters
f a spherical system is not simple as formula (1).

.2. Moving boundary problem

Formula (1) is convenient to use because only parameters of
rug release system and release time are needed and its result
oincides with the experimental data when C0 � Cs. But in the
ase C0 → Cs, deviations from the real mass transport rates become
ignificant. To overcome this shortcoming, Paul and McSpadden
1976) and Paul (1985) generalized the classical Stefan model to the
esearch of drug release process from planar matrix and laminated
atrix. Fick’s second law

∂C

∂t
= D

∂2C

∂x2
(3)

s applied as the governing equation in diffusion region (0 < x < S(t),
ig. 2) with the initial and boundary conditions
C(x, t) = 0, t = 0,

C(x, t) = 0, x = 0,

C(x, t) = Cs, x = S(t),
Fig. 2. Profile of concentration of one moving boundary problem.

and the mass balance equation

(C0 − Cs)
dS(t)

dt
= D

∂C

∂x

∣∣∣∣
x=S(t)

, (4)

which is known as ‘Stefan condition’ mentioned in the book of
Crank (1987) is adopted at diffusion interface S(t). The exact solu-
tion of the model in planar system (Paul and McSpadden, 1976)
is

C = Cs
erf(ı)
erf(ı∗)

(5)

where erf(z) is the error function and

ı = x

2
√

Dt
,  ı∗ = S(t)

2
√

Dt
,

√
�ı∗ exp(ı∗2)erf(ı∗) = Cs

C0 − Cs
.

Consequently, the exact amount of drug release to semi-infinity
space can be written as

Mt = 2Cs

erf(ı∗)

√
Dt

�
. (6)

Compared with the exact solution (6),  the error of Higuchi’s approx-
imation (1) is less than 1% when C0/Cs > 10, while in the case
C0/Cs → 1, it is greater than 11.3%.

Abdekhodaie and Cheng (1997) studied the drug release kinetics
of a solute from planar and spherical matrices into a finite exter-
nal volume by using the combination of variables method. They
obtained the exact solutions which have the similar form to formula
(5). Their results indicate that fractional release and the maximum
fractional release increase as the increase of the external fluid vol-
ume, but fractional release decreases as the increase of initial drug
loading at external volume.

From the viewpoint of mathematics, the presence of moving dif-
fusion interface leads to the nonlinearity of the system, and only a
few exact solutions can be obtained (Crank, 1987). Many approxi-
mation methods have been applied to solve the moving boundary
problems of integer order, e.g., the refined integral method (Lee,
1980), the perturbation method (Aziz and Na, 1984; Cohen and

Erneux, 1988a,b; Lin and Peng, 2005), and so forth (Ozisik, 1993;
Crank, 1987).

Lee (1980) successfully applied refined integral method, which
has been demonstrated to be effective in phase change problem, to
the moving boundary problems in both planar and spherical sys-
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ems with perfect sink condition. The approximation amount of
rug release in a planar system is given as

Mt = 1 + H√
3H

Cs

√
Dt,

H = 5
(

C0

Cs

)
− 4 +

√(
C0

Cs

)2

− 1.

(7)

his expression of Mt is similar to Higuchi’s result (1) and the exact
xpression (6).  Compared with formula (1),  (7) keeps the simplic-
ty and shows the higher accuracy for any values of the initial
rug loadings. The refined integral method is also used to study
he kinetics of degradable matrix system with constant degradable
elocity (Lee, 1980). The results can be written as

Mt

M∞
= ı +

(
Ba

D

)
� − ı

Cs

C0

(
1
2

+ a3

6

)
,

a3 = C0

Cs
+ ıh −

√(
C0

Cs
+ ıh

)2

− (1 + 2ıh),

h = 1
2

(
1 − C0

Cs

)  (
Ba

D

)
,

here ı is dimensionless diffusion interface, B is the constant
egradable velocity having the dimensions of a, and � is dimen-
ionless time.

In some pharmaceutical fields, many simple empirical formulae
an also be accepted for the prediction of drug release in order
o avoid complicated mathematical analysis. Ritger and Peppas
1987a,b) developed a new semi-empirical, exponential expression
f fractional release of drug

Mt

M∞
= ktn, (8)

here k is a constant incorporating characteristics of the macro-
olecular network system, and n is the diffusional exponent which

elates to the transport mechanism. The semi-empirical solution
an be applied to many areas of drug delivery system.

. Mathematical models with fractional operators

Anomalous diffusion has been known since the treatise of
ichardson (1926) on turbulent diffusion. Over the past few
ecades, many efforts have been made to provide the physical

nterpretations of the empirical data in disorder media by the
id of fractional calculus (Dokoumetzidis and Macheras, 2009;
okoumetzidis et al., 2010a,b; Kytariolos et al., 2010; Liu and
u, 2009; Metzler and Klafter, 2000b; Tan et al., 2007; Voller,
010). Due to the heterogeneous character in the complex sys-
ems, fractional operators can be introduced as a powerful tool.
he advantage of fractional operators is the flexible orders of frac-
ional derivatives and integrals which have a range of applications.
onsidering the viscoelasticity of the cytoplasm and its complex
tructures, Tan et al. (2007) developed an anomalous sub-diffusion
odel for exploring calcium spark formation in cardiac myocytes.

he fractional operators were also used to reproduce the experi-
ental results by moderating the order of fractional derivatives.
okoumetzidis and Macheras (2009) showed that a fractionalized
ero-order release give rise to power law kinetics by using frac-
ional calculus and it provided a physical interpretation of the
mpirically used power law for the description of the entire release
urve. Voller (2010) used the fractional differential equation to

escribe anomalous diffusion behaviors of Stefan melting prob-

em in heat transfer where heterogeneities at all scales are present.
ome other applications of fractional calculus on pharmacokinet-
cs have been presented recently (Dokoumetzidis and Macheras,
009; Fuite et al., 2002; Macheras, 1995, 1996; Marsh and Tuszyski,
armaceutics 418 (2011) 78– 87

2006). Fractional calculus can provide a unified basis to interpret
the transport and heterogeneous processes of drug release.

3.1. Fundamentals of fractional calculus

In this section, three kinds of fractional operators and their prop-
erties are listed (Kilbas et al., 2006; Podlubny, 1999).

3.1.1. Definitions
Let [0, t] be a finite interval on the real axis R. The

Riemann–Liouville fractional integral and derivative operators are
defined as

0D−ˇ
t f (t):= 1

� (ˇ)

∫ t

0

f (�)

(t − �)1−ˇ
d� (  ̌ > 0),  (9)

0D˛
t f (t):= dn

dtn

[
1

� (n − ˛)

∫ t

0

f (�)

(t − �)˛+1−n
d�

]
(n − 1 <  ̨ ≤ n).

(10)

The Riemann–Liouville (R–L) fractional operators have played an
important role in the development of theory of fractional calcu-
lus due to their applications in pure mathematics. However, R–L
fractional operators lead to initial conditions containing the limit
values of the R–L fractional derivatives at the lower terminal t = 0.
The Caputo fractional operators are presented because there is no
known physical interpretation for the initial conditions caused by
the R–L’s definition. Caputo’s definition with order  ̨ (n − 1 <  ̨ ≤ n)
can be written as

C
0D˛

t f (t):= 1
� (n − ˛)

∫ t

0

f (n)(�)

(t − �)˛+1−n
d�. (11)

From the definitions of two  types of fractional operators, we know
that the R–L derivative is constructed as the integer derivative of
the fractional integral while the Caputo derivative is the fractional
integral of an integer derivative.

An important property used in following sections is

∗
0D˛

t t� = � (1 + �)
� (1 + � − ˛)

t�−˛, (12)

where D˛
t represents R–L (  ̨ > 0, � > − 1) or Caputo (� ≥ 1 ≥  ̨ > 0, or

0 < � ≥  ̨ ≥ 1) fractional derivative. In particular, it should be men-
tioned that the Caputo derivative of a constant is zero, and this is
not the case for an R–L derivatives, that is

C
0D˛

t C = 0, (13)

0D˛
t C = 1

� (1 − ˛)
t−˛. (14)

3.1.2. Integral transforms
Integral transform methods are the powerful tools to solve

fractional differential equations. Fourier transform and Laplace
transform are the methods frequently used in solving fractional
differential equations. The definitions are given as follows

f̂ (k) = F{f (x); k} =
∫ ∞

−∞
e−ikxf (x)dx, (15)

f̃ (p) = L{f (t); p} =
∫ ∞

0

e−pt f (t)dt. (16)
Using the Fourier transform, the Riesz fractional derivative can
be defined by

F{∇˛g(x); k} = |k|˛G(k), (17)

where G(k) is the Fourier transform of g(x).
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The formula for Laplace transform of Riemman–Liouville deriva-
ive is (Podlubny, 1999)

{0D˛
t f (t); p} = p˛F(p) −

n−1∑
k=0

pk[0D˛−k−1
t f (t)]t=0, (18)

hile Laplace transform of Caputo derivative is

{C
0D˛

t f (t); p} = p˛F(p) −
n−1∑
k=0

p˛−k−1f (k)(0),  (19)

here F(p) is the Laplace tranform of f(t) and  ̨ ∈ (n − 1, n] is the
ractional order.

.2. Fractional anomalous diffusion equation

Due to the nature of heterogeneities (Metzler and Klafter,
000b; Zhang et al., 2009), the Gaussian statistics may  be modi-
ed in order to describe the anomalous diffusion in the complex
ystems. In the drug delivery systems, a range of heterogeneity
ength scales should be taken into account. If the heterogeneity
ength scales are much smaller than the scale of system, the Gaus-
ian statistics holds and the transport behavior can be described
y standard diffusion relationship which is the mean squared dis-
lacement in the course of time, i.e.,

x2(t)〉∼Dt. (20)

n the other hand, if the heterogeneities occur across a range of
ength scales, with the largest approaching the domain scale, the
tandard diffusion models maybe not suitable for describing the
ransport phenomena, and anomalous transport behaviors should
e taken into account (Voller, 2010). Generally, a signature of
nomalous diffusion is that the mean squared displacement in the
ourse of time is a nonlinear power law rather than a linear growth,
.e.,

x2(t)〉∼Dt˛. (21)

he process is called sub-diffusion if 0 <  ̨ < 1 while it is called super-
iffusion if  ̨ > 1. Fractional diffusion equations are usually obtained
rom the standard diffusion equation by replacing the second order
pace derivative by a fractional derivative of order  ̌ ∈ (0, 2] or the
rst order time derivative by a fractional derivative of order  ̨ ∈ (0,
]. The equations can be written as

D˛
t C(x, t) = D∇ˇ

x C(x, t), (22)

here C(x, t) is the concentration of solvent. ∗
0D˛

t and ∇ˇ
x are the

ime and space fractional derivatives in R–L, Caputo, Riesz or other
enses (Kilbas et al., 2006; Podlubny, 1999), and D  is the generalized
iffusion coefficient whose dimension is [Lˇ/T˛].

Sub-diffusive dynamics is characterized by strong memory
ffects on the level of the probability density function (PDF) and
s classically described in terms of CTRW with a long-tailed waiting
ime PDF. Mathematically, these assumptions will lead to a time
ractional diffusion equation. In contrast, when the jump lengths
re distributed according to a ˇ-stable symmetric Lévy law and the
urvival probability being of Mittag–Leffler type with index ˛, the
acroscopic evolution obeys the space–time fractional diffusion

22).

.3. Fractional flux
In the standard diffusion case, Fick’s first law is

(x, t) = −D
∂

∂x
C(x, t), (23)
Fig. 3. Profile of concentration of two moving boundary problem.

Due to the non-local property of anomalous diffusion, following
Chaves (1998),  Zanette (1998) and Paradisi et al. (2001),  we  use the
generalized non-local Fick’s law

F(x, t) = −D0D1−˛
t ∇ˇ−1

x C(x, t) (24)

to replace (23). Expression (24) can be obtained by combining the
continuity equation

∇ · F + ∂C

∂t
= 0 (25)

with the fractional diffusion equation (22). As a result, the Stefan
condition can be written as

(C0 − Cs)
dS(t)

dt
= D0D1−˛

t ∇ˇ−1
x C(x, t). (26)

From another point of view, Liu and Xu (2004) used the following
Stefan condition

(C0 − Cs)0D˛
t S(t) = D∇ˇ−1

x C(x, t) (27)

to keep the balance of the dimensions.

3.4. Mathematical models of controlled drug release devices

To describe anomalous diffusion in the drug release process, Liu
and Xu (2004) firstly introduced an mathematical model using time
fractional diffusion equation. Li et al. (2007) generalized the time
fractional diffusion equation in Liu and Xu’s model to a space–time
fractional one. Li et al. (2008) also examined the space fractional
derivative of both Riemman–Liouville type and Caputo type and
obtained the similarity solutions. Yin and Xu (2009) studied the
drug release process in slow degradable matrix by using fractional
calculus. The profiles of the drug in the matrix can be shown in Fig. 2
or Fig. 3, where R(t) is the outer boundary of the matrix. Actually,
Fig. 2 is a special case of Fig. 3 (R(t) = 0). All these models can be
written as

0D˛
t C(x, t) = D∇ˇ

x C(x, t), (0 <  ̨ ≤ 1 <  ̌ ≤ 2, R(t) < x < S(t))

(28)
C(x, t) = 0 (x = R(t)), (29)

C(x, t) = Cs (x = S(t)), (30)

(C0 − Cs)
dS(t)

dt
= D0D1−˛

t ∇ˇ−1
x C(x, t), (t > 0),  (31)
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C0 − Cs)0D˛
t S(t) = D∇ˇ−1

x C(x, t), (t > 0),  (31*)

(t) = 0 (t = 0).  (32)

The models mentioned above can be obtained based on different
ractional operators and boundary conditions.

Model-I (Liu and Xu, 2004) R(t) = 0, 0 <  ̨ ≤ 1,  ̌ = 2 and ∇ˇ
x = ∂2/∂x2.

The boundary condition (31*) is used.
Model-II (Li et al., 2007) R(t) = 0, 0 <  ̨ ≤ 1, 1 <  ̌ ≤ 2 and ∇ˇ

x is the
Riesz type derivative. The boundary condition (31) is used.
Model-III (Li et al., 2008) R(t) = 0, 0 <  ̨ ≤ 1, 1 <  ̌ ≤ 2 and ∇ˇ

x is the
Caputo type (case I) or the Riemman–Liouville type (case II) deriva-
tive. The boundary condition (31) is used.
Model-IV (Yin and Xu, 2009) R(t) = �t, 0 <  ̨ ≤ 1,  ̌ = 2 and ∇ˇ

x =
∂2/∂x2. The boundary condition (31*) is used.

The time fractional derivative 0D˛
t in model-I is a sequen-

ial fractional derivative 0D˛
t = 0D˛−1

t 0D1
t under the assumption

D˛−1
t C(x, t)|t=0 = 0. In other models, the time fractional deriva-

ives are all defined in the Caputo sense.

. Some results of fractional diffusion models

.1. non-degradable matrix

The moving boundary problem is a special nonlinear problem
hich is difficult to get the exact solution (Crank, 1987). Further-
ore, many useful properties of integer derivatives are not known

o carry over analogously for the case of fractional derivative oper-
tor, such as a clear geometric or physical meaning, product rules,
nd chain rules. In this study, we just give some results of the four
odels mentioned above.
For model-I, II and III, by using reduced dimensionless variables

efined as

 = x

R
, � =

( D
Rˇ

)1/˛

t, 
 = C(x, t)
Cs

, S(�) = s

R
, (33)

nd changing variables of the fractional derivatives similar to the
elations presented in Li et al. (2007,  Appendix), the governing
quation (28) subject to the conditions (29)–(32) can be reduced
o the respective dimensionless forms,

D˛
� 
(	, �) = ∇ˇ

	

(	, �), (0 < 	 < S(�)), (34)

(	, �) = 0, (	 = 0),  (35)

(	, �) = 1, (	 = S(�)), (36)

dS(�)
d�

= −F(	, �)|	=S(�), (37)

(0) = 0, (38)

here � = (C0 − Cs)/Cs and F(	, �)=0D1−˛
� ∇ˇ−1
 is the non-

imensional flux.

.1.1. Integral transform method: model-I, II
The Laplace, Fourier and Mellin integral transforms are the most

ommon methods used to solve fractional diffusion equations in
ertain domain (Metzler and Nonnenmacher, 2002; Metzler and
lafter, 2000a; Mainardi et al., 2001, 2005). Mainardi et al. (2001)
iscussed Cauchy problem for the space–time fractional diffusion

quation. The fundamental solution is obtained by using Mellin
ransform with respect to the Fourier–Laplace representation of
he equation. Gorenflo et al. (2000) used the similarity method and
aplace transform to obtain the scale-invariant solution of time-
ractional diffusion-wave equation in terms of Wright function.
armaceutics 418 (2011) 78– 87

Since we only consider the early stage of loss before the diffu-
sion front moves to R, the semi-infinite assumption can be used.
As a result, we  first consider Eq. (34) in semi-infinite space which
satisfies


(0, �) = 0 (39)

and


(	, 0) = q = const. (40)

For time fractional diffusion, the above problem has been discussed
by Schneider and Wyss (1989) in detail. The solutions of the models
I and II can be written as


 = q

∫ ∞

0

dy
{

G(|	 − y|, �) − G(|	 + y|, �)
}

, (41)

where G(	, �) is Green’s function (or fundamental solution). It can
also be written as


(	, �) = 2q

∫ 	

0

G(z, �)dz. (42)

For model-I, Green’s function is

G(	, �) = 1
2

�−˛/2M
(

|	|�−˛/2;
˛

2

)
, (43)

The M(z ; ˛) and W(z ; ˛, ˇ) are Mainardi and Wright functions
defined as (Podlubny, 1999)

M(z;
˛

2
) =

∞∑
k=0

(−z)k

k!�
[
− ˛

2 k + (1 − ˛
2 )

] = W
(

−z; −˛

2
, 1 − ˛

2

)
. (44)

While in the space–time fractional case (model-II), using G˛,ˇ(	, �)
to denote Green’s function of our problem, we  have

G˛,ˇ(	, �) = 1
ˇ	

1
2�i

∫ r+i∞

r−i∞

� (s/ˇ)� (1 − (s/ˇ))� (1 − s)
� (s/2)�  (1 − (s/2))�  (1 − (˛s/ˇ))

(
	

��

)s

ds

= 1
ˇ	

H2,1
3,3

[
|	|
��

∣∣∣∣
(

1, 1
ˇ

)(
1, ˛

ˇ

)(
1, 1

2

)(
1, 1

ˇ

)
(1,1)

(
1, 1

2

) ]
,

(45)

where � = ˛/ˇ, 0 < r < 1, and Hp,q
m,n(z) is Fox H function (Mainardi et

al., 2005).
After some calculations, the solutions to model-I are obtained

as


(	, �) = K

[
1 − W

(
− 	

�˛/2
; −˛

2
, 1

)]
, (46)

S(�) = p · �˛/2. (47)

And K, p are the constants to be determined by the following equa-
tions

K = 1
1 − W(−p; −(˛/2), 1)

, (48)

K = p�� (1 + (˛/2))
� (1 − (˛/2))W(−p; −(˛/2), 1 − (˛/2))

.  (49)

Using the Fourier transform of G˛,ˇ(	, �) and the integral expres-
sion of H function, 
(	, �) in model-II can be presented in terms of
Fox H function,


(	, �) = 2q

ˇ
H2,2

4,4

[
	

��

∣∣∣∣
(

1, 1
ˇ

)
(1,1)

(
1, ˛

ˇ

)(
1, 1

2

)(
1, 1

ˇ

)
(1,1)(0,1)

(
1, 1

2

) ]
, (50)
where q is a constant to be determined. Noting that the boundary
condition (36) has to be satisfied for all values of �, S(�) must be
proportional to �� , i.e.

S(�) = p�� , (51)
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here p is a constant to be determined.
Substituting solutions (50) and (51) into the boundary condi-

ions (36) and (37), the equations for p and q can be written as

2q

ˇ
H2,2

4,4

[
p

∣∣∣∣
(

1, 1
ˇ

)
(1,1)

(
1, ˛

ˇ

)(
1, 1

2

)(
1, 1

ˇ

)
(1,1)(0,1)

(
1, 1

2

) ]
= 1. (52)

p� = 2q

ˇp
H2,1

3,3

[
p

∣∣∣∣
(

2
ˇ

, 1
ˇ

)(
2˛
ˇ

, ˛
ˇ

)(
1, 1

2

)(
2
ˇ

, 1
ˇ

)
(1,1)

(
1, 1

2

) ]
. (53)

In order to get the value of p and q, we must solve the above
wo equations. However, computing routine for H function is not
vailable. Fortunately, in some special cases, the H function can be
epresented by convergent series which can be calculated. Some
esults are listed in Li et al. (2007).

.1.2. Similarity solution: model-III
The results of the two cases of model-III can be written as the

ollowing theorems.

heorem 4.1. The similarity transformations under which Eqs.
34)–(37) are invariant are given by the expressions

 = 	�−˛/ˇ, 
(	, �) = f (z) and S(�) = p�˛/ˇ, (54)

where p is a constant to be determined.

heorem 4.2. The Caputo derivative C
0D˛

� , (0 <  ̨ ≤ 1) of the func-
ion 
(	, �) = f(z), z = 	�−˛/ˇ is given by the relation

D˛
� f (z) = �−˛ ∗P0,1−˛

ˇ/˛
f (z) = �−˛K0,1−˛

ˇ/˛

(
−˛

ˇ

d

dz
f (z)

)
, (55)

here ∗P0,1−˛
ˇ/˛

is the Caputo-type modification of Erdélyi–Kober frac-

ional differential operator


,˛
ı

g(y) = ı

� (˛)
yı


∫ ∞

y

(uı − yı)
˛−1

u−ı(
+˛−1)g(u)du,  ̨ > 0.

(56)
heorem 4.3. The reduced form of Eq. (34) is given by

P0,1−˛
ˇ/˛

f (z)=0Dˇ
z f (z), (57)

nd the conditions become

 (0) = 0, f (p) = 1, �p
� (1 + (˛/ˇ))

� (1 + (˛/ˇ) − ˛)
=0Dˇ−1

z f (z)|z=p. (58)

heorem 4.4. As for case 1, the similarity solution of equation (57)
s

 (z) = C1zW(−˛,1−(˛/ˇ))(ˇ,2)(z
ˇ), (59)

here W(�,a)(
,b)(z) is the generalized Wright function defined by

(�,a)(
,b)(z) =
∞∑

k=0

zk

� (a + �k)� (b + 
k)
,  �, 
 ∈ R, a, b ∈ C. (60)

In the following analysis, the constraint −1 < � < 0, 
 > 0 is used.

heorem 4.5. As for case 2, the similarity solution of equation (57)
s given by

 (z) = C2zˇ−1W(−˛,1+(˛/ˇ)−˛)(ˇ,ˇ)(z
ˇ). (61)

heorem 4.6. As for case 1, we have

p2 � (1 + (˛/ˇ))
� (1 + (˛/ˇ) − ˛)

W(−˛,1−(˛/ˇ))(ˇ,2)(p
ˇ)

2−ˇ ˇ
= p W(−˛,1−(˛/ˇ)(ˇ,3−ˇ)(p ) (62)

nd

1 = 1
pW(−˛,1−(˛/ˇ))(ˇ,2)(pˇ)

.  (63)
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With some computation, the value of C1 and p can be obtained. Corre-
spondingly, as for case 2, we have

�pˇ � (1 + (˛/ˇ))
� (1 + (˛/ˇ) − ˛)

W(−˛,1+(˛/ˇ)−˛)(ˇ,ˇ)(p
ˇ)

= W(−˛,1+(˛/ˇ)−˛)(ˇ,1)(p
ˇ) (64)

and

C2 = 1
pˇ−1W(−˛,1+(˛/ˇ)−˛)(ˇ,ˇ)(pˇ)

.  (65)

4.1.3. Discussions on solutions
The dimensionless diffusion interface S(�) versus dimension-

less time � at various solute loading levels is shown in Fig. 4.
Curves 1–3 correspond to space fractional diffusion models, 4 cor-
responds to the ordinary diffusion model, 5–6 correspond to time
fractional diffusion models. It is obvious that the time fractional
diffusion model and the space fractional one describe sub-diffusion
and super-diffusion, respectively. It is consistent with the conclu-
sion of Metzler and Klafter (2000b, 2004).  As for the same curve,
by comparing the four pictures in Fig. 4, we can see that the higher
initial solute loading level is, the longer the time to reach R for the
diffusion interface S(�) needs. These conclusions show the fact that
the models are well consistent with the truth.

For model-I, the amount of released drug per unit area of dimen-
sional variables given by Liu and Xu (2004) is

Mt =
∫ t

0

D∂C

∂x
|x=0dt = K�t1−˛/2

� (2 − ˛/2)
(66)

where �2 = D.
But K is included in transcendental equations (48) and (49), and

the exact solution is difficult to apply. An approximate solution of
Mt

Mt ≈ �t1−˛/2

� (2 − ˛/2){
1
2


Cs +
[

ıCs(C0 − Cs)� (1 + ˛/2)
� (1 − ˛/2)

+ (4�  + 
2)C2
s

4

]1/2
}

(67)

where


 = 2a1b−1
0 − a0b−2

0 b1, ı = a2
0b−1

0 ,

� = 2a0a2b−2
0 + a2

0b−4
0 b2

1 − a2
1b−2

0 − a2
0b−3

0 b2 − a0a1b−3
0 b1,

a0 = � (1 − ˛/2),  an = a0

n∑
j=1

(−1)j+1

j!� (−˛/2 + 1 − ˛/2)
an−j,

bn =
n∑

j=0

(−1)n−jaj

(n − j + 1)!� [−˛(n − j)/2 + 1 − ˛/2]
,

is provided.
When 0 <  ̨ ≤ 1, Eq. (67) becomes

Mt ∝ t1−˛/2 = tn, n ∈ [
1
2

, 1).  (68)

Formula (68) coincides with well known semi-empirical formula
(8), which is mentioned that n ∈ [0.5, 1) is the non-Fickian process
by Ritger and Peppas (1987a).

The amount of drug released per unit area at time t can also be

obtained by using the following formula (Abdekhodaie and Cheng,
1996, 1997),

Mt = C0s(t) −
∫ s(t)

0

C(x, t)dx, (69)



84 C. Yin, X. Li / International Journal of Pharmaceutics 418 (2011) 78– 87

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

S
(τ

)
S

(τ
)

S
(τ

)
S

(τ
)

A

C0/Cs=2.5

21 3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

B

C D

C0/C s=4

4321 5 6

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C0/Cs=6

54321 6

0 2 4 6 8 10 12 14 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C0/C s=7.5

54321 6

F solute
1

w
U
a

t

a

T
I
F
t
t
I
t
t

boundary model, which only considered the diffusion process in
non-degradable matrix. The shortcoming of non-degradable sys-
tem is that the matrix needs to be removed from patients. In many
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ig. 4. Dimensionless diffusion interface S(�) versus dimensionless time at various 

.5),  (1, 1.75), (1, 2), (0.75, 2) and (0.5, 2), respectively.

hile the total amount of drug per unit area is given by M∞ = C0R.
sing the variables in Eq. (33), we can get the fractional release in

 dimensionless form

Mt

M∞
= S(�) −

∫ S(�)

0

CS

C0

(	, �)d	. (70)

From solution (50) and formula (70), we obtain

Mt

M∞
=

[
p − Cs

C0

2pq

ˇ
H2,2

4,4

[
p

∣∣∣∣
(

1, 1
ˇ

)
(1,1)

(
1, ˛

ˇ

)(
1, 1

2

)(
1, 1

ˇ

)
(1,1)(−1,1)

(
1, 1

2

) ]]
�� . (71)

Similarly, the fractional release can be obtained easily by using
he series forms of solution (59) and (61). The results are

Mt

M∞
=

[
p − Cs

C0
C1p2W(−˛,1−˛/ˇ)(ˇ,3)(p

ˇ)
]

�� , (72)

nd

Mt

M∞
=

[
p − Cs

C0
C2pˇW(−˛,1+˛/ˇ−˛)(ˇ,ˇ+1)(p

ˇ)
]

�� . (73)

he dimensionless fractional releases for the two cases of model-
II when � = 3.5 versus to the dimensionless time � are shown in
ig. 5. Apparently, for every set of parameters, case 1 needs less

ime for the diffusion interface to reach R. To show the effects of
he initial drug loading, the fractional releases of case 2 of model-
II in the case  ̨ = 0.75,  ̌ = 1.75 are shown in Fig. 6. It is obvious
hat the maximum fractional release increases as the increase of
he initial drug loading.
τ

 loading levels. Curves 1–6 correspond to the cases that (˛, ˇ) equals to (1, 1.25), (1,

4.2. Degradable matrix: model-IV

Most researches in drug release were based on one moving
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Fig. 5. Results of Mt/M∞ versus to �.
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dvantage without patient’s second surgery for taking matrix out.
urthermore, the additional degradable boundary can also moder-
te drug release rate.

.2.1. Two-parameter regular perturbation method: model-IV
In particular, taking into account of the effect of degradable

atrix, the mathematical analysis on drug release kinetics becomes
ore complicated with the presence of a second moving bound-

ry, namely degradable interface (shown in Fig. 3). Especially, the
pproximation methods with some numerical computation should
e applied to moving boundary problems. The perturbation method

s a powerful tool to solve the nonlinear equations. Cohen and
rneux (1988a,b) introduced the perturbation method to investi-
ate the diffusion process in planar glassy polymers. Lin and Peng
2005) also applied perturbation method to the research of drug
elease in a spherical swelling polymer. Then, the perturbation
ethod was introduced by Yin and Xu (2009) to get an approxi-
ation analytic solution of drug release in slow degradable matrix.
Some assumptions in Yin and Xu (2009) are listed as follows:

1) The polymer as a slab matrix should be degraded very slowly.
2) A perfect sink condition at degradable interface is assumed. (3)
he diffusivity D  of drug in matrix system is constant. (4) The initial
oading concentration C0 of drug is much greater than the solubility
s of drug, i.e. C0 � Cs. By introducing the following dimensionless
ariables

(x, t) = C(x, t)
Cs

, t∗ =
( D

R2

)1/˛

t, ε = Cs

C0
,

∗(t∗) = R(t)
R

, S∗(t∗) = S(t)
R

, x∗ = x

R
,

here ε ∼ o(1) from the fourth assumption is ratio of initial con-
entration Cs and solubility C0 and R is the scale of length, the
imensionless equations are obtained while omitting the ‘*’ for
revity in the following paper:

D˛
t 
(x, t) = ∂2


∂x2
(R(t) < x < S(t)), (74)

(x, t) = 0 (x = R(t)), (75)

(x, t) = 1 (x = S(t)), (76)
ε−1 − 1)
C
0D˛

t S(t) = ∂


∂x

∣∣∣∣
x=S(t)

(t > 0),  (77)

(t) = S(t) = 0 (t = 0).  (78)
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The new dimensionless space–time variables are introduced

y = x − R(t), (79)

X(t) = S(t) − R(t). (80)

From the first assumption, we  have

R(t) = �t, �∼o(1), (81)

where � represents the dimensionless moving velocity of degrad-
able interface. And dimensionless parameters � and ε are smaller
than one.

Two-parameter regular perturbation method is introduced to
solve the nonlinear equations. and the solutions of the equations
can be assumed as


(y, t; �, ε) = 
0(y, t) + 
1(y, t)� + 
2(y, t)ε + · · ·,  (82)

X(t; �, ε) = X0(t) + X1(t)� + X2(t)ε + · · ·.  (83)

Substituting Eqs. (79)–(83) into Eqs. (74)–(78) and equating the
terms with identical powers of � and ε, the equations of zero, one
and two  orders can be solved.

Using Fourier and Laplace integral transforms, the solutions of
concentrations can be written as


0(y, t) = H0

[
[1 − W

(
− y

t˛/2
; −˛

2
, 1

)]
, (84)


1(y, t) = �H0

2
yt1−˛W

( −y

t˛/2
; −˛

2
, 2 − ˛

)
+ �H0

2
t1−˛/2W

( −y

t˛/2
; −˛

2
, 2 − ˛

2

)
, (85)


2(y, t) = H1

[
1 − W

(
− y

t˛/2
; −˛

2
, 1

)]
(86)

and the solutions of diffusion moving boundaries are

X0(t) = 0, (87)

X1(t) = −t, (88)

X2(t) = H0t˛/2

� (1 + ˛/2)
,  (89)

where H0, H1 are integral constants to be determined from Stefan
conditions.

4.2.2. Discussions on solutions
Considering the special case (� = 0), two moving boundaries

problem can be simplified to one moving boundary problem dis-
cussed by Liu and Xu (2004).  Figs. 7 and 8 show that how velocity of
diffusion interface varies with different parameters  ̨ and ε. From
Fig. 7, the diffusion interface runs faster when  ̨ increases. From
Fig. 8, the diffusion interface runs faster when ε increases. The
parameter  ̨ can be controlled by using different polymer matrices,
while the parameter ε can be controlled by using different loading
drug. We  can vary the two parameters to control the rate of drug
release.

Fig. 9 shows the comparison between exact solution and
approximation solution. When ε is determined, approximation
solution curve runs faster than exact solution curve. But the differ-
ence between exact solution and approximation solution becomes

smaller when the ε decreases.

Considering the degradable boundary condition, two  moving
boundaries are obtained as

R(t) = �t, (90)
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S(t) = X(t) + R(t)

= X0(t) + X1(t)� + X2(t)ε + �t + · · ·

= H0t˛/2

� (1 + ˛/2)
ε + · · ·.

(91)

Because the degradable velocity is very slow, it can not influence the
diffusion interface evidently and rate of diffusion interface would
be the main factor of drug release. Although smaller ε can make
approximation solution get closer to exact solution, smaller ε also
results that the diffusion interface runs slower. If degradable inter-
face runs faster than diffusion interface, degradable velocity of
matrix would be the main factor of drug release and the mechanism
of system would change.

5. Conclusions

Since the remarkable work of Higuchi (1961) was published, the
mathematical model and simulation of drug release process have
been developed by many scientists (Arifin et al., 2006). The theoret-
ical researches on predicting mechanism of drug delivery system
have developed into an important component as well as experi-
mental studies. Most of previous studies in this field focused on the
ordinary diffusion process. In the past few decades, fractional cal-
culus has attracted a good deal of attention due to its applications in
the modeling of complex systems. Fractional anomalous diffusion
equation is one of most studied subjects. Fractional calculus pro-
vides a scientific basis for the analysis of diverse and heterogeneous
process of drug release.

Replacing the diffusion equations by fractional ones in classical
models for drug release process, four fractional models are intro-
duced to describe anomalous diffusions. Some methods and results
of fractional diffusion equations are presented in this review.

Until now, only some simple cases of fractional diffusion equa-
tion in drug release process are investigated. Mathematical models
considering more factors like matrix of other geometric shapes or
swelling matrix will be focused on in the future. With the help of
fractional calculus, we believe the mechanism of anomalous dif-
fusion would be investigated more deeply and can be used into
practical application flexibly.
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